Respuesta :

Answer:

center: (0, 0)

radius: 15

Step-by-step explanation:

We are given the equation for a circle:

[tex]2x^2+2y^2=450[/tex]

The standard form of a circle is:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

where:

  • [tex](h,k)[/tex] is the center
  • [tex]r[/tex] is the radius

We can divide both sides of the given equation by 2 to get it into the standard form:

[tex]\dfrac{2x^2+2y^2}{2}=\dfrac{450}{2}[/tex]

        ↓↓↓

[tex]x^2 + y^2 = 225[/tex]

Now, we can see that:

[tex]r^2 = 225[/tex]

[tex]r = \sqrt{225}[/tex]

[tex]\boxed{r=15}[/tex]

And, the center is the origin:

(0, 0)

because there are no apparent [tex]h[/tex] and [tex]k[/tex] values. Rather,

[tex]h = k = 0[/tex]

Further Note

We could rewrite the equation with [tex]h[/tex] and [tex]k[/tex], but it would be unnecessarily complicated because subtracting 0 is redundant:

[tex](x-0)^2 + (y-0)^2 = 225[/tex]

Ver imagen Intriguing456