Solve each equation. Use one of the 4 methods you have practiced the last few days:
1. Write exponents using the same base
2. Take the log of both sides
3. Use properties of logs then write as an exponent
4. Use properties of logs then drop the log on both sides

7. 5^x-3=600

Respuesta :

msm555

Answer:

x ≈ 6.97464

Step-by-step explanation:

To solve the equation [tex]\sf 5^{x-3} = 600[/tex], we can use the logarithmic property that states:

[tex]\sf a^{\log_a(b)} = b[/tex]

In this equation, [tex]\sf a = 5[/tex], [tex]\sf b = 600[/tex], and [tex]\sf x - 3[/tex] is the exponent.

So, we can rewrite the equation as:

[tex]\sf 5^{x-3} = 600[/tex]

[tex]\sf x - 3 = \log_5(600)[/tex]

Now, calculate [tex]\sf \log_5(600)[/tex]:

[tex]\sf x - 3 = \log_5(600) [/tex]

[tex]\sf x - 3 = \dfrac{\log_{10}(600)}{\log_{10}(5)}[/tex]

Using a calculator to find the value of [tex]\sf \log_{10}(600)[/tex] and [tex]\sf \log_{10}(5)[/tex]:

[tex]\sf \log_{10}(600) \approx 2.77815125 [/tex]

[tex]\sf \log_{10}(5) \approx 0.6989700043 [/tex]

[tex]\sf x - 3 = \dfrac{2.77815125}{0.6989700043}[/tex]

[tex]\sf x - 3 \approx 3.974635869[/tex]

Add 3 to both sides:

[tex]\sf x \approx 3 + 3.974635869[/tex]

[tex]\sf x \approx 6.974635869[/tex]

[tex]\sf x \approx 6.97464 \textsf{(in 5 d.p.)}[/tex]

Therefore, x ≈ 6.97464.