(Need asap)Solve each equation. Use one of the 4 methods you have practiced the last few days:
1. Write exponents using the same base
2. Take the log of both sides
3. Use properties of logs then write as an exponent
4. Use properties of logs then drop the log on both sides

6. (1/16)^x+5=8^2

Respuesta :

msm555

Answer:

x = -6.5

Step-by-step explanation:

To solve the equation [tex]\sf \left(\dfrac{1}{16}\right)^{x+5} = 8^2[/tex], let's use the logarithmic property that states:

[tex]\sf a^{\log_a(b)} = b[/tex]

Here, [tex]\sf a = \frac{1}{16}[/tex], [tex]\sf b = 8^2[/tex], and [tex]\sf x + 5[/tex] is the exponent.

So, we can rewrite the equation as:

[tex]\sf \left(\frac{1}{16}\right)^{x+5} = 8^2[/tex]

[tex]\sf x + 5 = \log_{\frac{1}{16}}(8^2)[/tex]

Now, calculate [tex]\sf \log_{\frac{1}{16}}(8^2)[/tex]:

[tex]\sf x + 5 = \log_{\frac{1}{16}}(64)[/tex]

We know that [tex]\sf \frac{1}{16} = (16)^{-1}[/tex], so:

[tex]\sf x + 5 = \log_{(16)^{-1}}(64)[/tex]

Using the property [tex]\sf \log_b(a^c) = c \cdot \log_b(a)[/tex]:

[tex]\sf x + 5 = -\log_{16}(64)[/tex]

[tex]\sf x + 5 = -\log_{16}(2^6)[/tex]

[tex]\sf x + 5 = -6 \cdot \log_{16}(2)[/tex]

Now, we know that [tex]\sf 16 = 2^4[/tex], so:

[tex]\sf x + 5 = -6 \cdot \log_{2^4}(2)[/tex]

[tex]\sf x + 5 = -6 \cdot \dfrac{1}{4}[/tex]

[tex]\sf x + 5 = -\dfrac{3}{2}[/tex]

Subtract 5 from both sides:

[tex]\sf x = -\dfrac{3}{2} - 5[/tex]

[tex]\sf x = -\dfrac{13}{2}[/tex]

[tex] \sf x = - 6.5 [/tex]

Ttherefore, x = -6.5