ThT sides of one regular hexagon is larger than that of the other regular hexagon by 1cm. If the product of their areas is 243, then find the sides of both the regular hexagons.

Respuesta :

anbu40

Answer:

Sides of both regular hexagon's are 2 cm , 3 cm.

Step-by-step explanation:

Area of regular hexagon:

       [tex]\boxed{\bf Area \ of \ regular \ hexagon = \dfrac{3\sqrt{3}a^2}{2}}[/tex]

a is the side of regular hexagon.

Let the side of one regular hexagon be 'x' cm.

The side of other regular hexagon = (x + 1) cm

    [tex]\sf \text{Area of the first regular hexagon = $ \dfrac{3\sqrt{3}x^2}{2}$}\\\\\text{Area of the second regular hexagon = $ \dfrac{3\sqrt{3}(x+1)^2}{2}$}[/tex]

     Product of their areas = 243

 [tex]\sf ~~~~~~~~~ \dfrac{3\sqrt{3}x^2}{2}* \dfrac{3\sqrt{3}(x+1)^2}{2}=243\\\\\\ \dfrac{3*3* *\sqrt{3*3}*x^2 *(x + 1)^2 }{4}=243\\\\\\~~~~~~~~~~~~~ \dfrac{9*3*x^2*(x+1)^2}{4}=243\\\\\\~~~~~~~~~~~~~ \dfrac{27 *x^2*(x +1)^2}{4}=243\\\\\\~~~~~~~~~~~~~~~~~~~~ x^2 *(x +1)^2 = \dfrac{243*4}{27}\\\\\\~~~~~~~~~~~~~~~~~~~ x^2 *(x +1)^2 = 9*4\\[/tex]

                      x²* (x + 1)² = 36

Take square roots,

                        x *(x + 1) = 6

                       x² + x - 6 = 0

              x² - 2x + 3x - 6 = 0

            x(x - 2) + 3(x - 2) = 0

                    (x - 2)(x + 3) = 0  

          x - 2 = 0    ;  x+ 3 = 0

               x = 2     ;       x = -3

x = -3 is ignored as measurement will not be in negative.

Side of one regular hexagon = 2 cm

Side of second regular hexagon = (2 +1 ) = 3 cm