The rectangular prism has a volume
of 52 cubic meters. What is the width of the
prism if the length is 6.5 and the height is 2

Respuesta :

Answer:

Step-by-step explanation:

First, the formula for volume is V=L•W•H or Length and Height can be substituted for Base.

So multiply the known values 6.5 and 2 to get 13.
Since, you have to multiply to find the product, do the inverse operation(division).
So 52(total)/13 is 4 meters which is the width

msm555

Answer:

width: 4 meter

Step-by-step explanation:

To find the width ([tex]\bold{\sf w}[/tex]) of a rectangular prism given its volume, length, and height, we can use the formula for the volume of a rectangular prism:

[tex]\large\boxed{\boxed{\sf \textsf{Volume} = \textsf{length} \times \textsf{width} \times \textsf{height}}} [/tex]

Given:

  • Length ([tex]\bold{\sf l}[/tex]) = 6.5 meters
  • Height ([tex]\bold{\sf h}[/tex]) = 2 meters
  • Volume ([tex]\bold{\sf V}[/tex]) = 52 cubic meters

We can rearrange the volume formula to solve for the width ([tex]\bold{\sf w}[/tex]):

[tex]\sf V = l \times w \times h [/tex]

Substitute the given values into the formula:

[tex]\sf 52 = 6.5 \times w \times 2 [/tex]

Now, solve for [tex]\bold{\sf w}[/tex]:

[tex]\sf 52 = 13 \times w [/tex]

[tex]\sf w = \dfrac{52}{13} [/tex]

[tex]\sf w = 4 [/tex]

Therefore, the width of the prism is [tex]\bold{\sf \boxed{4} }[/tex] meters.