Answer:
[tex]\sf \textsf{Base of the Triangle}= \boxed{0.60 } m[/tex]
[tex]\sf \textsf{Side of the Square }=\boxed{ 0.60} m[/tex]
[tex]\sf \textsf{Area of the Triangle} = \boxed{0.27 } m^2[/tex]
[tex]\sf \textsf{Area of the Square }= \boxed{0.37 } m^2[/tex]
[tex]\sf \textsf{Area of Composite} =\boxed{0.64 } m^2[/tex]
Step-by-step explanation:
Given:
- Hypotenuse (h) = 37 inches
- Height (v) = 35 inches
Convert Hypotenuse and Height to Meters:
[tex] \begin{aligned} h &= 37 \, \textsf{in} \times 0.0254 \, \textsf{m/in} \\ &= 0.9398 \, \textsf{m} \\ v &= 35 \, \textsf{in} \times 0.0254 \, \textsf{m/in} \\ &= 0.889 \, \textsf{m} \end{aligned} [/tex]
Calculate Half Base (Base of the Triangle):
[tex] \begin{aligned} \textsf{Half Base} &= \sqrt{h^2 - v^2} \\&= \sqrt{(0.9398 \, \textsf{m})^2 - (0.889 \, \textsf{m})^2} \\&= \sqrt{0.88322404 \, \textsf{m}^2 - 0.790321 \, \textsf{m}^2} \\&= \sqrt{0.09331904 \, \textsf{m}^2} \\&= 0.3048 \\ & = 0.30 \, \textsf{m (in nearest hundredth)} \end{aligned} [/tex]
Calculate Full Base (Base of the Triangle):
[tex] \begin{aligned} \textsf{Base of the Triangle} &= 2\times \textsf{Half Base} \\ &= 2 \times 0.3048 \, \textsf{m} \\ &= 0.6096\\ & = 0.61 \, \textsf{m (in nearest hundredth)} \end{aligned} [/tex]
Side of the Square (Equal to the Base of the Triangle):
[tex] \textsf{Side of the Square} = \textsf{Base of the Triangle} = 0.6096 \\ = 0.60 \, \textsf{m} \textsf{(in nearest hundredth)}[/tex]
Area of the Triangle:
[tex] \begin{aligned} \textsf{Area of the Triangle} &= \dfrac{1}{2} \times \textsf{Base of the Triangle} \times\textsf{Height} \\&= \dfrac{1}{2} \times 0.6096 \,\textsf{m} \times 0.889 \, \textsf{m} \\&= 0.2709672 \\ & 0.27 \, \textsf{m}^2\textsf{(in nearest hundredth)}\end{aligned} [/tex]
Area of the Square:
[tex] \begin{aligned} \textsf{Area of the Square} &= (\textsf{Side of the Square})^2 \\&= (0.6096 \, \textsf{m})^2 \\&= 0.37161216 \\ & 0.37 \, \textsf{m}^2\textsf{(in nearest hundredth)} \end{aligned} [/tex]
Area of the Composite Figure (Triangle + Square):
[tex] \begin{aligned} \textsf{Area of Composite Figure} &= \textsf{Area of Triangle} + \textsf{Area of Square} \\&= 0.2709672 \, \textsf{m}^2 + 0.37161216 \, \textsf{m}^2 \\&= 0.64257936\\ & = 0.64 \, \textsf{m}^2\textsf{(in nearest hundredth)} \end{aligned} [/tex]
Therefore, the area of the composite figure, converted to meters, is approximately [tex]\boxed{0.64 \, \textsf{m}^2}[/tex].