Respuesta :

I make it (360 + sqrt 144,000)  / 24  * 4   - 11

   =[(360 + 120) / 24]*4 - 11
 
  =  (480 / 24) * 4 = 1
  = 20*4 - 11

  = 69

To simplify an expression is to reduce the expression to the lowest term. The solution to [tex]((6^2 \times 10) + \frac{\sqrt{(5000*3) - 600)}}{ 4!} * 4 ) - \log(1 * 10^{11})[/tex] is 370

Given that:

[tex]((6^2 \times 10) + \frac{\sqrt{(5000*3) - 600)}}{ 4!} * 4 ) - \log(1 * 10^{11})[/tex]

First, we evaluate all exponents

[tex]((36 \times 10) + \frac{\sqrt{(5000*3) - 600)}}{ 4!} * 4 ) - \log(1 * 10^{11})[/tex]

Evaluate the factorials

[tex]((36 \times 10) + \frac{\sqrt{(5000*3) - 600)}}{4\times 3 \times 2 \times 1} * 4 ) - \log(1 * 10^{11})[/tex]

Evaluate the multiplications/divisions

[tex]((360) + \frac{\sqrt{(15000) - 600)}}{24} * 4 ) - \log(10^{11})[/tex]

Evaluate the multiplications/divisions

[tex]((360) + \frac{\sqrt{(15000) - 600)}}{6} ) - \log(10^{11})[/tex]

Apply law of logarithm

[tex]((360) + \frac{\sqrt{(15000) - 600)}}{6} ) - 10\log(10)[/tex]

[tex]\log(10) = 1[/tex]

So, we have:

[tex]((360) + \frac{\sqrt{(15000) - 600)}}{6} ) - 10[/tex]

Subtract

[tex]((360) + \frac{\sqrt{14400)}}{6} ) - 10[/tex]

Evaluate the square roots

[tex]((360) + \frac{120}{6} ) - 10[/tex]

Evaluate the division

[tex]((360) + 20 ) - 10[/tex]

Remove all brackets

[tex]360 + 20 - 10[/tex]

Simplify

[tex]370[/tex]

Hence:

[tex]((6^2 \times 10) + \frac{\sqrt{(5000*3) - 600)}}{ 4!} * 4 ) - \log(1 * 10^{11}) = 370[/tex]

Read more about simplification at:

https://brainly.com/question/403991