Respuesta :

The constant solution is
x(t) = k

It satisfies the ODE
[tex]5t^{3} \frac{dx}{dt}-5x-4=0[/tex]

Because x' = 0, therefore
-5k - 4 = 0
k = - 4/5

Answer:  [tex]k=- \frac{4}{5} [/tex]