The function is [tex]y=f(t)=-16t^2+486[/tex]
for example, at time t=2s , the height y of the stone is found as follows:
[tex]y=f(2)=-16\cdot 2^2+486=-16\cdot4+486=-64+486=422 (ft)[/tex]
When the ball hits the ground, the height y, becomes 0.
So we solve:
[tex]0=-16t^2+486\\\\16t^2=486\\\\t^2=\displaystyle{\frac{486}{16}=30.375[/tex]
[tex]t=\sqrt{30.375}\approx5.51[/tex]
Answer: C. 5.51 seconds