Respuesta :
The axis of symmetry of a quadratic function [tex]f(x)=ax^2+bx+c[/tex] is given by the equation [tex]x=h[/tex], where h is the x-coordinate of the vertex and is equal to [tex]\frac{-b}{2a}[/tex].
1.
[tex]f(x)=4x^2-1 \\ a=4 \\ b=0 \\ \Downarrow \\ h=\frac{-0}{2 \times 4}=0 \\ \\ \hbox{the axis of symmetry:} \\ x=0[/tex]
2.
[tex]g(x)=x^2-8x+5 \\ a=1 \\ b=-8 \\ \Downarrow \\ h=\frac{-(-8)}{2 \times 1}=\frac{8}{2}=4 \\ \\ \hbox{the axis of symmetry:} \\ x=4[/tex]
3.
[tex]h(x)=-3x^2-12x+1 \\ a=-3 \\ b=-12 \\ \Downarrow \\ h=\frac{-(-12)}{2 \times (-3)}=\frac{12}{-6}=-2 \\ \\ \hbox{the axis of symmetry: \\ x=-2[/tex]
The functions ranked from least to greatest based on their axis of symmetry: h(x), f(x), g(x).
1.
[tex]f(x)=4x^2-1 \\ a=4 \\ b=0 \\ \Downarrow \\ h=\frac{-0}{2 \times 4}=0 \\ \\ \hbox{the axis of symmetry:} \\ x=0[/tex]
2.
[tex]g(x)=x^2-8x+5 \\ a=1 \\ b=-8 \\ \Downarrow \\ h=\frac{-(-8)}{2 \times 1}=\frac{8}{2}=4 \\ \\ \hbox{the axis of symmetry:} \\ x=4[/tex]
3.
[tex]h(x)=-3x^2-12x+1 \\ a=-3 \\ b=-12 \\ \Downarrow \\ h=\frac{-(-12)}{2 \times (-3)}=\frac{12}{-6}=-2 \\ \\ \hbox{the axis of symmetry: \\ x=-2[/tex]
The functions ranked from least to greatest based on their axis of symmetry: h(x), f(x), g(x).
Answer:
h(x) f(x) g(x)
Step-by-step explanation:
This was the correct answer on the test