Respuesta :
[tex]f(g(x))=(2x^2+5)^2+2x^2+5+2\\
f(g(x))=4x^4+20x^2+25+2x^2+7\\
f(g(x))=4x^4+22x^2+32
[/tex]
For given functions f(x) and g(x) the composite function f(g(x)) is [tex]f(g(x))=4x^4+22x^2+32[/tex]
What is function?
- "It defines a relation between input values and output values."
- "In function, for each input there is exactly one output."
What is composition of function?
- "It is applying one function to the results of another."
- "It is written is [tex]\( f\circ g(x)=f(g(x))[/tex] "
- "First apply function f, then apply function g on the result of function f "
For given question,
We have been given two functions,
[tex]f(x) = x^2 + x + 2,~g(x) = 2x^2 + 5.[/tex]
We need to find f(g(x))
This means we need to find composite function [tex]\( f\circ g(x)=f(g(x))[/tex]
We have, [tex]g(x) = 2x^2 + 5[/tex]
We find the value of f(x) for x = g(x)
[tex]f(g(x))\\\\=f(2x^2 + 5)\\\\=(2x^2 + 5)^2 + (2x^2 + 5) + 2\\\\=[(2x^2)^2+2(2x^2)(5)+5^2]+2x^2+5+2\\\\=[4x^4+20x^2+25]+2x^2+7\\\\=4x^4+20x^2+2x^2+25+7\\\\=4x^4+22x^2+32[/tex]
Therefore, for given functions f(x) and g(x) the composite function f(g(x)) is [tex]f(g(x))=4x^4+22x^2+32[/tex]
Learn more about composite function here:
https://brainly.com/question/20379727
#SPJ3