20)
if we take 392 to be the 100%, what is 98 off of it in percentage?
[tex]\bf \begin{array}{ccll}
amount&\%\\
\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\
392&100\\
98&p
\end{array}\implies \cfrac{392}{98}=\cfrac{100}{p}\implies p=\cfrac{98\cdot 100}{392}[/tex]
22)
let's say is "x", so if "x" is the 100%, and we know that 145 is the 33%, what the dickens is "x"?
[tex]\bf \begin{array}{ccll}
amount&\%\\
\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\
x&100\\
145&33
\end{array}\implies \cfrac{x}{145}=\cfrac{100}{33}\implies x=\cfrac{145\cdot 100}{33}[/tex]
24)
again, if we take "x" to be the 100%, and we know that 17 is 40%, what is "x"?
[tex]\bf \begin{array}{ccll}
amount&\%\\
\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\
x&100\\
17&40
\end{array}\implies \cfrac{x}{17}=\cfrac{100}{40}\implies x=\cfrac{17\cdot 100}{40}[/tex]