Respuesta :
In polar coordinates, [tex]x^2+y^2=r^2[/tex], so the integral can be written as
[tex]\displaystyle\iint_R\sin(x^2+y^2)\,\mathrm dA=\int_{\theta=0}^{\theta=2\pi}\int_{r=4}^{r=9}r\sin(r^2)\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\pi\int_{s=16}^{s=81}\sin s\,\mathrm ds[/tex]
where we take [tex]s=r^2[/tex] so that [tex]\mathrm ds=2r\,\mathrm dr[/tex].
[tex]=\pi(\cos16-\cos81)[/tex]
[tex]\displaystyle\iint_R\sin(x^2+y^2)\,\mathrm dA=\int_{\theta=0}^{\theta=2\pi}\int_{r=4}^{r=9}r\sin(r^2)\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\pi\int_{s=16}^{s=81}\sin s\,\mathrm ds[/tex]
where we take [tex]s=r^2[/tex] so that [tex]\mathrm ds=2r\,\mathrm dr[/tex].
[tex]=\pi(\cos16-\cos81)[/tex]
The value of the integral is: πcos(16)- πcos (81)
What are polar coordinates?
The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a from a reference point and an angle from a reference direction.
Given:
∫∫ r sin(x²+y²)dA and 16≤x²+y²≤81.
Now,
x =rcosϕ
y=rsinϕ
I=r
Find the integration limits:
ϕ∈[0,2π]
16≤x²+y²≤81
16≤r² cos² Ф + r²sin² Ф≤81
16≤r²≤81
4≤r≤9
So, r∈[4,9]
Now,
∫∫ r sin(x²+y²)dA=
= [tex]\int\limits^9_4 {dr} \int\limits^{2\pi}_0 {rsin \;(r^{2}) } \, d\phi[/tex]
=2π [tex]\int\limits^9_4 {rsin \;(r^{2}) } \, dr[/tex]
Let r² = u
2rdr=du
Also, limit will change from 16 to 25.
5→25
4→16
So,
= π[tex]\int\limits^{81}_{16} {sin \;(u) } \, du[/tex]
=−π|cos (u)∣[tex]^{81}_{16}[/tex]
= πcos(16)- πcos (81)
Learn more about integral here:
https://brainly.com/question/17191581
#SPJ2