C2d3 has a solubility product constant of 9.14×10−9. what is the molar solubility of c2d3? express your answer with the appropriate units.

Respuesta :

First we must express the Ksp expression for C2D3 to be in terms of molar solubility x. 

C2D3 = (2x)^2 * (3x)^3= 108 x^5 


Then we set that equation to be equal to our solubility constant 

9.14 x 10^-9 = 108 x^5 

Calculate for x:

x = 9.67 x 10^-3 


So the molar solubility is 9.67 x 10^-3 

Answer: [tex]9.67\times 10^{-3}[/tex] moles /liter

Explanation: The equation for the reaction will be as follows:

[tex]C_2d_3\leftrightharpoons 2C^{3+}+3d^{2-}[/tex]

1 mole of [tex]C_2d_3[/tex] gives 2 moles of [tex]C^{3+}[/tex] and 3 moles of [tex]d^{2-}[/tex].

Thus if solubility of [tex]C_2d_3[/tex] is s moles/liter, solubility of  [tex]C^{3+}[/tex] is 2s moles\liter and solubility of [tex]d^{2-}[/tex] is 3s moles/liter

Therefore,  

[tex]K_sp=[C^{3+}]^2[d^{2-}^3][/tex]

[tex]9.14\times 10^{-9}=[2s]^2[3s]^3[/tex]

[tex]108s^5=9.14\times 10^{-9}[/tex]

[tex]s=9.67\times 10^{-3}moles/liter[/tex]