Respuesta :

[-1,-1,1] 
or 
[-2,-2,2] 
.....
Dot Product = 0

The basis of [tex]{W^ \bot }[/tex] is [tex]\boxed{{\text{span}}\left\{ {\left[ {\begin{array}{*{20}{c}}{ - 1}\\{ - 1}\\1 \end{array}} \right]} \right\}}[/tex]

Further explanation:

Given:

The vector is,

[tex]\left[ {\begin{array}{*{20}{c}}x\\y\\{x + y} \end{array}} \right][/tex]

Explanation:

Consider the set of all vectors can be expressed as follows,

[tex]\left[{\begin{array}{*{20}{c}}x\\y\\ {x + y} \end{array}} \right] = x\left[ {\begin{array}{*{20}{c}}1\\0\\1\end{array}} \right] + y\left[ {\begin{array}{*{20}{c}}0\\1\\1\end{array}} \right][/tex]

The spanned vectors of [tex]W[/tex] are [tex]\left[ {\begin{array}{*{20}{c}}1 \\ 0\\1 \end{array}} \right]{\text{ and }}\left[ {\begin{array}{*{20}{c}}0 \\1 \\1 \end{array}} \right][/tex]

Consider a vector [tex]\left[ {\begin{array}{*{20}{c}}p\\q\\r\end{array}} \right][/tex] as [tex]{W^ \bot }.[/tex]

The dot product of [tex]W[/tex] and [tex]{W^ \bot }[/tex] must be zero.

[tex]\begin{aligned}\left[{\begin{array}{*{20}{c}}1\\0\\1 \end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}p\\q \\r\end{array}} \right]&= 0 \hfill \\\left[ {\begin{array}{*{20}{c}}1&0&1 \end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}p \\q\\r\end{array}} \right] &= 0 \hfill\\\end{aligned}[/tex]

Further solve the above equation,

[tex]\begin{aligned}p + r &= 0\\p&= - r\\\end{aligned}[/tex]

[tex]\begin{aligned}\left[{\begin{array}{*{20}{c}}0\\1\\1\end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}}p\\q\\r\end{array}} \right]&= 0\\\left[{\begin{array}{*{20}{c}}0&1&1\end{array}} \right] \cdot \left[{\begin{array}{*{20}{c}}p\\q\\r\end{array}} \right]&= 0\\\end{aligned}[/tex]

Further solve the above equation.

[tex]\begin{aligned}q + r &=0\\q &= - r\\\end{aligned}[/tex]

Therefore, [tex]p = q.[/tex]

The matrix [tex]{W^ \bot }[/tex] will be [tex]\left[ {\begin{array}{*{20}{c}}{ - c}\\ { - c}\\c\end{array}} \right][/tex]

The basis of can be obtained as follows,

[tex]\left[{\begin{array}{*{20}{c}}{ - c}\\{ - c}\\c\end{array}} \right] = c\left[ {\begin{array}{*{20}{c}}{ - 1}\\{ - 1}\\1\end{array}} \right][/tex]

The basis of [tex]{W^ \bot }[/tex] is [tex]\boxed{{\text{span}}\left\{ {\left[ {\begin{array}{*{20}{c}}{ - 1} \\{ - 1}\\1 \end{array}} \right]} \right\}}[/tex]

Learn more:

1. Learn more about inverse of the functionhttps://brainly.com/question/1632445.

2. Learn more about equation of circle brainly.com/question/1506955.

3. Learn more about range and domain of the function https://brainly.com/question/3412497

Answer details:

Grade: College

Subject: Mathematics

Chapter: Vectors and matrices

Keywords: W set, all vectors, x, y, x + y, real numbers, perpendicular, matrices, vectors, basis.