Respuesta :
Just the test, D and E are correct:
f(x)= 5([tex]\frac{1}{5}[/tex])[tex]^{-x}[/tex]
f(x)= 5(5)[tex]^{x}[/tex]
Answer:
[tex]f(x) = 5\cdot \left(\frac{1}{5}\right)^{-x}[/tex] and [tex]f(x) = 5\cdot 5^{x}[/tex]
Step-by-step explanation:
A reflected function means that each value of the original function can be obtained by using a value of x that has the same distance to the symmetry axis than original value of x. That is:
[tex]y = f (L - x) = f (L + x)[/tex]
Since [tex]L = 0[/tex], reflected function has the following form:
[tex]f(-x) = 5\cdot \left(\frac{1}{5}\right)^{-x} = 5 \cdot \left[\left(\frac{1}{5} \right)^{x} \right]^{-1} = 5\cdot 5^{x} = 5^{1+x}[/tex]
Hence, correct options are:
[tex]f(x) = 5\cdot \left(\frac{1}{5}\right)^{-x}[/tex] and [tex]f(x) = 5\cdot 5^{x}[/tex]