Respuesta :
(c+8)(c-8)
3(2y+5)(2y-5)
There are no like terms so it's still ab^2-b
3(2y+5)(2y-5)
There are no like terms so it's still ab^2-b
Answer:
a)
[tex]c^2-64=(c-8)(c+8)[/tex]
b)
[tex]12y^2-75=3(2y-5)(2y+5)[/tex]
c)
[tex]ab^2-b=b(ab-1)[/tex]
Step-by-step explanation:
a)
[tex]c^2-64[/tex]
This expression could also be given by:
[tex]c^2-8^2[/tex]
Now, we know that:
[tex]a^2-b^2=(a-b)(a+b)[/tex]
Hence, we have:
[tex]c^2-64=(c-8)(c+8)[/tex]
b)
[tex]12y^2-75[/tex]
[tex]12y^2-75=3(4y^2-25)[/tex]
which is further given by:
[tex]12y^2-75=3((2y)^2-5^2)\\\\12y^2-75=3(2y-5)(2y+5)[/tex]
c)
[tex]ab^2-b[/tex]
we take out common b from both the terms to get:
[tex]ab^2-b=b(ab-1)[/tex]