Answer:
Part a)
[tex]K_t = 500 J[/tex]
Part b)
[tex]K_r = 250 J[/tex]
Part c)
[tex]K = 750 J[/tex]
Explanation:
Part a)
As we know that cylinder is rolling without slipping
So we have
[tex]v = R\omega[/tex]
now we have
[tex]v = 10 m/s[/tex]
[tex]m = 10 kg[/tex]
now we know that translational kinetic energy is given as
[tex]K_t = \frac{1}{2}mv^2[/tex]
[tex]K_t = \frac{1}{2}(10)(10^2)[/tex]
[tex]K_t = 500 J[/tex]
Part b)
Now for rotational kinetic energy we know that
[tex]K_r = \frac{1}{2}I \omega^2[/tex]
[tex]K_r = \frac{1}{2}(\frac{1}{2}mR^2)(\frac{v}{R})^2[/tex]
[tex]K_r = \frac{1}{4}mv^2[/tex]
[tex]K_r = \frac{1}{4}(10)(10^2)[/tex]
[tex]K_r = 250 J[/tex]
Part c)
Total kinetic energy is given as
[tex]K = K_r + K_t[/tex]
[tex]K = 500 + 250[/tex]
[tex]K = 750 J[/tex]