[tex]\bf ~~~~~~~~~~~~\textit{function transformations}
\\\\\\
% templates
f(x)={{ A}}({{ B}}x+{{ C}})+{{ D}}
\\\\
~~~~y={{ A}}({{ B}}x+{{ C}})+{{ D}}
\\\\
f(x)={{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}}
\\\\
f(x)={{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}}
\\\\
f(x)={{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}}
\\\\
--------------------[/tex]
[tex]\bf \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\
\bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\
~~~~~~\textit{reflection over the x-axis}
\\\\
\bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\
~~~~~~\textit{reflection over the y-axis}[/tex]
[tex]\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\
~~~~~~if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\
\left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\
\bullet \textit{ vertical shift by }{{ D}}\\
~~~~~~if\ {{ D}}\textit{ is negative, downwards}\\\\
~~~~~~if\ {{ D}}\textit{ is positive, upwards}\\\\
\bullet \textit{ period of }\frac{2\pi }{{{ B}}}[/tex]
with that template in mind, let's check,
"shifted four units up" D = +4
"and five units to the right" B = 1, C = -5, C/B = -5/1 or -5
[tex]\bf f(x)=\stackrel{A}{1}\sqrt{\stackrel{B}{1}x\stackrel{C}{+0}}\stackrel{D}{+0}\qquad \\\\\\ f(x)=\stackrel{A}{1}\sqrt{\stackrel{B}{1}x\stackrel{C}{-5}}\stackrel{D}{+4}\implies f(x)=\sqrt{x-5}+4[/tex]