The perimeter of a rectangle is represented by 4x2 + 5x − 2. The perimeter of a smaller rectangle is represented by x2 + 3x + 5. Which polynomial expression BEST represents how much larger the first rectangle is than the smaller rectangle?

Respuesta :

Answer:

[tex]3x^{2} +2x-7[/tex]                                                                                                                                        

Step-by-step explanation:

Given :

Perimeter of a bigger rectangle is represented by [tex]4x^{2} +5x-2[/tex]

Perimeter of a smaller  rectangle is represented by [tex]x^{2} +3x+5[/tex]

To Find : Polynomial expression that represents how much larger the first rectangle is than the smaller rectangle.

Solution :

Subtract the equation of perimeter of  smaller rectangle from equation of  perimeter of a bigger rectangle :

⇒  [tex]4x^{2} +5x-2 - (x^{2} +3x+5)[/tex]

⇒[tex]4x^{2} +5x-2-x^{2} -3x-5[/tex]

[tex]3x^{2} +2x-7[/tex]

So, Polynomial expression that represents how much larger the first rectangle is than the smaller rectangle is [tex]3x^{2} +2x-7[/tex].

Answer:

A) [tex]3x^{2} +2x-7[/tex]

Step-by-step explanation:

You need to subtract the perimeter of the smaller rectangle from the perimeter of the larger rectangle.

[tex](4x^{2} +5x-2) - (x^{2} + 3x +5)[/tex]

Distribute -1 (-) to each [tex](x^{2} + 3x +5)[/tex] :

[tex]4x^{2} +5x-2-x^{2} -3x-5[/tex]

Add like terms & solve:

[tex]3x^{2} +2x-7[/tex]