Respuesta :
Angle b is 35 because angle a is (2b-15) and angle c is (3b-15) and b is (b) and angles in a triangle add to 180 so (2b-15)+(3b-15)+(b)=180, so (6b-30)=180 / 6b= 210 so b is 35
Answer:
{35}^{\circ}
Step-by-step explanation:
GIven: In Δ[tex]\text{abc}[/tex], the measure of angle [tex]\angle \text{a}[/tex] is fifteen less than twice the measure of [tex]\angle \text{b}[/tex]. the measure of angle [tex]\angle \text{c}[/tex] equals the sum of the measures of angle [tex]\angle \text{a}[/tex] and angle [tex]\angle \text{b}[/tex].
To Find: determine the measure of angle [tex]\angle \text{b}[/tex].
Solution:
In Δ[tex]\text{abc}[/tex],
[tex]m\angle \text{a}+m\angle \text{b}+m\angle \text{c}={180}^{\circ}[/tex]
also,
[tex]m\angle\text{a}=2m\angle\text{b}-{15}^{\circ}[/tex]
[tex]m\angle\text{c}=m\angle\text{a}+m\angle\text{b}[/tex]
putting value of [tex]\angle\text{c}[/tex]
[tex]m\angle\text{a}+m\angle\text{b}+m\angle \text{a}+m\angle\text{b}={180}^{\circ}[/tex]
[tex]2(m\angle\text{a}+m\angle\text{b})={180}^{\circ}[/tex]
[tex]m\angle\text{a}+m\angle\text{b}={90}^{\circ}[/tex]
putting value of [tex]\angle\text{a}[/tex]
[tex]2m\angle\text{b}-{15}^{\circ}+m\angle\text{b}={90}^{\circ}[/tex]
[tex]3m\angle\text{b}={90}^{\circ}+{15}^{\circ}[/tex]
[tex]m\angle\text{b}={35}^{\circ}[/tex]
Therefore [tex]\angle\text{b}[/tex] is [tex]{35}^{\circ}[/tex]