Respuesta :
Find the critical value or test statistic.
[tex]z = \frac{m - \mu}{\sigma/\sqrt{n}} = \frac{404.5 - 400}{24/\sqrt{144}} = \frac{4.5}{2} = 2.25[/tex]
Find P(z > 2.25) using a normal distribution table
P(z > 2.25) = 0.0122
[tex]z = \frac{m - \mu}{\sigma/\sqrt{n}} = \frac{404.5 - 400}{24/\sqrt{144}} = \frac{4.5}{2} = 2.25[/tex]
Find P(z > 2.25) using a normal distribution table
P(z > 2.25) = 0.0122
The probability of drawing a sample with a mean of more than 404.5 is: 0.0122
How to find the p-value?
We are given;
Population Mean; μ = 400
Standard Deviation; σ = 24
Sample Size; n = 144
Sample mean; x' = 404.5
Formula for z-score is;
z = (x' - μ)/(σ/√n)
z = (404.5 - 400)/(24/√144)
z = 2.25
From online p-value from z-score calculator, we have;
p-value = 0.0122
Read more about p-value at; https://brainly.com/question/4621112
#SPJ6