What are the zeros of the function f(x) = x2 + 5x + 5 written in simplest radical form? Quadratic formula: x = x = x = x = x =

Respuesta :

x²+5x+5 has zeroes given by x=(-5±√25-20)/2=(-5±√5)/2=-1.3820 and -3.6180.
In simplest radical form the zeroes are -5/2+√5/2 and -5/2-√5/2.

Answer:

[tex]x=\frac{-5\pm\sqrt{5}}{2}[/tex]

Step-by-step explanation:

We have been given a function [tex]f(x)=x^2+5x+5[/tex]. We are asked to find the zeros of our given function.

We will use quadratic formula to solve our given problem.  

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Upon substituting our given values in above formula we will get,

[tex]x=\frac{-5\pm\sqrt{5^2-4*1*5}}{2*1}[/tex]

[tex]x=\frac{-5\pm\sqrt{25-20}}{2}[/tex]

[tex]x=\frac{-5\pm\sqrt{5}}{2}[/tex]

Therefore, the value of x is [tex]\frac{-5\pm\sqrt{5}}{2}[/tex].