Respuesta :

[tex] log_{2x+7} 27=3[/tex]
(2x+7)^3=27
[tex]2x+7= \sqrt[3]{27} [/tex]
2x+7=3
2x=-4
x=-2

Answer:

[tex]x=-2[/tex]

Step-by-step explanation:

[tex]log_{2x+7}(27)= 3[/tex]

We need to find the value of x

WE write the given log equation in exponential form'

[tex]log_b(a)=x[/tex] can be written as [tex]b^x=a[/tex]

Using this we convert log to exponential form

[tex]log_{2x+7}(27)= 3[/tex]

[tex](2x+7)^3= 27[/tex]

27 can be written as 3^3

[tex](2x+7)^3= 3^3[/tex]

Both sides have exponent 3. To remove exponent 3 we take cube root on both sides.

[tex]2x+7=3[/tex]

Subtract 7 on both sides

[tex]2x=-4[/tex]

Divide both sides by 2

[tex]x=-2[/tex]