Respuesta :
Answer:
[tex]\displaystyle \frac{dy}{dx} = 2 \tan (x)[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = 2 \ln (\sec x)[/tex]
Step 2: Differentiate
- Logarithmic Differentiation [Chain Rule, Multiplied Constant]: [tex]\displaystyle \frac{dy}{dx} = 2 \bigg( \frac{1}{\sec x} \bigg) \cdot \frac{d}{dx}[\sec x][/tex]
- Trigonometric Differentiation: [tex]\displaystyle \frac{dy}{dx} = 2 \bigg( \frac{1}{\sec x} \bigg) \cdot \sec x \tan x[/tex]
- Simplify: [tex]\displaystyle \frac{dy}{dx} = 2 \tan (x)[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation