Respuesta :
A graph shows the solutions to be
.. x = -3
.. x = 1
Here's an analytic solution.
.. f(x) = g(x)
.. -2x = x^2 -3 . . . . . . substitute the given function definitions
.. 0 = x^2 +2x -3 . . . . add 2x
.. 0 = (x -1)(x +3) . . . . . factor
Use the zero-product rule to find values of x that are solutions. One or the other of the factors must be zero for the product to be zero.
.. x -1 = 0 . . . . first factor is zero
.. x = 1
.. x +3 = 0 . . . second factor is zero
.. x = -3
.. x = -3
.. x = 1
Here's an analytic solution.
.. f(x) = g(x)
.. -2x = x^2 -3 . . . . . . substitute the given function definitions
.. 0 = x^2 +2x -3 . . . . add 2x
.. 0 = (x -1)(x +3) . . . . . factor
Use the zero-product rule to find values of x that are solutions. One or the other of the factors must be zero for the product to be zero.
.. x -1 = 0 . . . . first factor is zero
.. x = 1
.. x +3 = 0 . . . second factor is zero
.. x = -3

Answer:
The correct options are,
-3, 1
Step-by-step explanation:
Given functions,
[tex]f(x)=-2x[/tex]
[tex]g(x)=x^2-3[/tex]
[tex]f(x)=g(x)[/tex]
[tex]\implies -2x=x^2-3[/tex]
[tex]\implies x^2+2x-3=0[/tex]
By middle term splitting,
[tex]x^2+3x-x-3=0[/tex]
[tex]x(x+3)-1(x+3)=0[/tex]
[tex](x-1)(x+3)=0[/tex]
By zero product property,
x = 1 or x = -3
Hence, the required solutions are,
x = 1 and x = -3