Respuesta :
The tension in the string and the acceleration must be equal for both masses. (See the free body diagrams)


Answer:
- The acceleration of the 4.00-kg mass is = [tex]3.92m/s^2[/tex]
Explanation:
[tex]m_1 = 6kg\\\\m_2 = 4kg[/tex]
From Newton"s 2nd law
[tex]m_1g - T = m_a[/tex] --------> 1
[tex]T - m_2gsin\theta = m_2a[/tex] ------>
adding equations 1 and 2
[tex]m_2g - m_2gsin\theta = (m_1+m_2)a\\\\a = \frac{g(m_1 - m_2sin\theta)}{m_1+m_2}\\\\a = \frac{9.8(6-4*sin30)}{6+4}\\\\a = 3.92m/s^2[/tex]
For more information, visit
https://brainly.com/question/8725130