Respuesta :
To find the turning point, or vertex, of this parabola, we need to work out the values of the coefficients b and c.
We are given two different solutions of the equation.
First, (2, 0).
[tex]0=(2)^2+2b+c\\-4=2b+c[/tex]
Second, (0, 14).
[tex]14=(0)^2+0b+c\\c=14[/tex]
So we have a value (14) for c. We can substitute that into our first equation to find b.
[tex]-4=2b+c\\-4=2b+14\\-18=2b\\b=-9[/tex]
We can now plug in our values for b and c into the equation to get its standard form.
[tex]y=x^2-9x+14[/tex]
To find the vertex, we can convert this equation to vertex form [tex]y=a(x-h)^2+k[/tex] by completing the square.
[tex]y=x^2-9x+14[/tex]
[tex]y=x^2-9x+(-4.5)^2+14-(-4.5)^2[/tex]
[tex]y=x^2-9x+20.25+14-20.25[/tex]
[tex]y=(x-4.5)^2-6.25[/tex]
Thus, the vertex is (4.5, –6.25).
We can confirm the solution graphically (see attachment).
We are given two different solutions of the equation.
First, (2, 0).
[tex]0=(2)^2+2b+c\\-4=2b+c[/tex]
Second, (0, 14).
[tex]14=(0)^2+0b+c\\c=14[/tex]
So we have a value (14) for c. We can substitute that into our first equation to find b.
[tex]-4=2b+c\\-4=2b+14\\-18=2b\\b=-9[/tex]
We can now plug in our values for b and c into the equation to get its standard form.
[tex]y=x^2-9x+14[/tex]
To find the vertex, we can convert this equation to vertex form [tex]y=a(x-h)^2+k[/tex] by completing the square.
[tex]y=x^2-9x+14[/tex]
[tex]y=x^2-9x+(-4.5)^2+14-(-4.5)^2[/tex]
[tex]y=x^2-9x+20.25+14-20.25[/tex]
[tex]y=(x-4.5)^2-6.25[/tex]
Thus, the vertex is (4.5, –6.25).
We can confirm the solution graphically (see attachment).

The x-coordinate of turning point will be "[tex]\frac{9}{2}[/tex]".
According to the question,
- [tex]y = x^2+bx+c[/tex]
Curve passes,
- [tex](2,0)[/tex] and,
- [tex](0,14)[/tex]
By putting (0, 14), we get
→ [tex]14=0+0+c[/tex]
[tex]c = 14[/tex]
then,
→ [tex]y = x^2+bx+14[/tex]
By putting (2, 0), we get
→ [tex]0=4+2b+14[/tex]
[tex]-2b = 18[/tex]
[tex]b = -\frac{18}{2}[/tex]
[tex]= -9[/tex]
then,
→ [tex]y = x^2-9x+14[/tex]
Finding [tex]\frac{dy}{dx}[/tex],
→ [tex]\frac{dy}{dx} = 2x-9[/tex]
For turning point,
→ [tex]\frac{dy}{dx} =0[/tex]
[tex]2x-9=0[/tex]
[tex]2x = 9[/tex]
[tex]x = \frac{9}{2}[/tex]
Thus the above answer is correct.
Learn more:
https://brainly.com/question/15180519