Let f(x)=5x3−60x+5 input the interval(s) on which f is increasing. (-inf,-2)u(2,inf) input the interval(s) on which f is decreasing. (-2,2) find the intervals on which f is concave up. (-inf,-2)u(2,inf) find the intervals on which f is concave down.

Respuesta :

Answers:

(a) f is increasing at [tex](-\infty,-2) \cup (2,\infty)[/tex].

(b) f is decreasing at [tex](-2,2)[/tex].

(c) f is concave up at [tex](2, \infty)[/tex]

(d) f is concave down at [tex](-\infty, 2)[/tex]

Explanations:

(a) f is increasing when the derivative is positive. So, we find values of x such that the derivative is positive. Note that

[tex]f'(x) = 15x^2 - 60 [/tex]

So,

[tex] f'(x) \ \textgreater \ 0 \\ \\ \Leftrightarrow 15x^2 - 60 \ \textgreater \ 0 \\ \\ \Leftrightarrow 15(x - 2)(x + 2) \ \textgreater \ 0 \\ \\ \Leftrightarrow \boxed{(x - 2)(x + 2) \ \textgreater \ 0} \text{ (1)}[/tex]

The zeroes of (x - 2)(x + 2) are 2 and -2. So we can obtain sign of (x - 2)(x + 2) by considering the following possible values of x:

-->> x < -2
-->> -2 < x < 2
--->> x > 2

If x < -2, then (x - 2) and (x + 2) are both negative. Thus, (x - 2)(x + 2) > 0.

If -2 < x < 2, then x + 2 is positive but x - 2 is negative. So, (x - 2)(x + 2) < 0.
 If x > 2, then (x - 2) and (x + 2) are both positive. Thus, (x - 2)(x + 2) > 0.

So, (x - 2)(x + 2) is positive when x < -2 or x > 2. Since

[tex]f'(x) \ \textgreater \ 0 \Leftrightarrow (x - 2)(x + 2) \ \textgreater \ 0[/tex]

Thus, f'(x) > 0 only when x < -2 or x > 2. Hence f is increasing at [tex](-\infty,-2) \cup (2,\infty)[/tex].

(b) f is decreasing only when the derivative of f is negative. Since

[tex]f'(x) = 15x^2 - 60 [/tex]

Using the similar computation in (a), 

[tex]f'(x) \ \textless \ \ 0 \\ \\ \Leftrightarrow 15x^2 - 60 \ \textless \ 0 \\ \\ \Leftrightarrow 15(x - 2)(x + 2) \ \ \textless \ 0 \\ \\ \Leftrightarrow \boxed{(x - 2)(x + 2) \ \textless \ 0} \text{ (2)}[/tex]

Based on the computation in (a), (x - 2)(x + 2) < 0 only when -2 < x < 2.

Thus, f'(x) < 0 if and only if -2 < x < 2. Hence f is decreasing at (-2, 2)

(c) f is concave up if and only if the second derivative of f is positive. Note that

[tex]f''(x) = 30x - 60[/tex]

Since,

[tex]f''(x) \ \textgreater \ 0 \\ \\ \Leftrightarrow 30x - 60 \ \textgreater \ 0 \\ \\ \Leftrightarrow 30(x - 2) \ \textgreater \ 0 \\ \\ \Leftrightarrow x - 2 \ \textgreater \ 0 \\ \\ \Leftrightarrow \boxed{x \ \textgreater \ 2} [/tex]

Therefore, f is concave up at [tex](2, \infty)[/tex].

(d) Note that f is concave down if and only if the second derivative of f is negative. Since,

[tex]f''(x) = 30x - 60[/tex]

Using the similar computation in (c), 

[tex]f''(x) \ \textless \ 0 \\ \\ \Leftrightarrow 30x - 60 \ \textless \ 0 \\ \\ \Leftrightarrow 30(x - 2) \ \textless \ 0 \\ \\ \Leftrightarrow x - 2 \ \textless \ 0 \\ \\ \Leftrightarrow \boxed{x \ \textless \ 2}[/tex]

Therefore, f is concave down at [tex](-\infty, 2)[/tex].