A student takes a true-false test that has 12 questions and guesses randomly at each answer. let x be the number of questions answered correctly. find p(x=5)
a. 0.1934
b. 0.2256
c. 0.1208
d. 0.0002

Respuesta :

The correct answer is a) 0.1934.

The binomial distribution is
[tex](_k^n)p^k(1-p)^{n-k}[/tex], where n is the number of trials (questions), k is the number of successes (correct answers), and p is the probability of a success (0.5 on true-false questions).  Using our information we have:

[tex](_5^{12})(0.5)^5(1-0.5)^{12-5} \\ \\=(_5^{12})(0.5)^5(0.5)^7 \\ \\=\frac{12!}{5!7!}(0.5)^5(0.5)^7 \\ \\=792(0.5)^5(0.5)^7 \\=0.1934[/tex]