Respuesta :
[tex]\bf \textit{total area of a cylinder}\\\\
A=2\pi r(h+r)~~
\begin{cases}
r=radius\\
h=height\\
-----\\
r=2\\
h=4
\end{cases}\implies A=2\pi (2)(4+2)\\\\\\ A=24\pi [/tex]
Answer: [tex]24\pi\text{ units}^2[/tex]
Step-by-step explanation:
We know that the total surface area of a cylinder is given by :-
[tex]TSA= 2\pi r(r+h)[/tex] , where r = radius and h= height of cylinder.
Given : Height : h= 4 units
Radius = 2 units
Then, the total surface area of the cylinder is given by :-
[tex]TSA= 2\pi 2(2+4)[/tex]
[tex]\Rightarrow\ TSA= 2\pi (12)=24\pi\text{ units}^2[/tex]
Hence, the total area for the cylinder = [tex]24\pi\text{ units}^2[/tex]