Respuesta :

[tex]\bf \textit{total area of a cylinder}\\\\ A=2\pi r(h+r)~~ \begin{cases} r=radius\\ h=height\\ -----\\ r=2\\ h=4 \end{cases}\implies A=2\pi (2)(4+2)\\\\\\ A=24\pi [/tex]

Answer: [tex]24\pi\text{ units}^2[/tex]

Step-by-step explanation:

We know that the total surface area of a cylinder is given by :-

[tex]TSA= 2\pi r(r+h)[/tex] , where r = radius  and h= height of cylinder.

Given : Height : h= 4 units

Radius = 2 units

Then, the total surface area of the cylinder is given by :-

[tex]TSA= 2\pi 2(2+4)[/tex]

[tex]\Rightarrow\ TSA= 2\pi (12)=24\pi\text{ units}^2[/tex]

Hence, the total area for the cylinder = [tex]24\pi\text{ units}^2[/tex]