We'll use this trig identity
cos(x-y) = cos(x)cos(y) + sin(x)sin(y)
where in this case,
x = pi/3
y = pi/5
So,
cos(x-y) = cos(x)cos(y) + sin(x)sin(y)
cos(pi/3-pi/5) = cos(pi/3)cos(pi/5) + sin(pi/3)sin(pi/5)
cos(pi/3)cos(pi/5) + sin(pi/3)sin(pi/5) = cos(pi/3-pi/5)
cos(pi/3)cos(pi/5) + sin(pi/3)sin(pi/5) = cos(5pi/15-3pi/15)
cos(pi/3)cos(pi/5) + sin(pi/3)sin(pi/5) = cos(2pi/15)
------------------------------------------------------------
The answer is cos(2pi/15) which can be written as [tex]\cos\left(\frac{2\pi}{15}\right)[/tex]