Solve the radical equation. square root 6n-11= n – 3 Which solution is extraneous? A.)2
B.)There are no extraneous solutions to the equation.
C.)7
D.)10

Respuesta :

d 10 right????????????:
ANSWER


D) 10

EXPLANATION

We want to solve the radical equation,

[tex] \sqrt{6n - 11} = n - 3[/tex]

Square both sides,



[tex]6n - 11 = (n - 3) ^{2} [/tex]

Expand brackets on right hand side,

[tex]6n - 11 = {n}^{2} - 6n + 9[/tex]

Rewrite in general quadratic equation form,

[tex] {n}^{2} - 12n + 20 = 0[/tex]

Factor to obtain,

[tex](n - 2)(n - 10) = 0[/tex]

Apply the zero product principle to get,

[tex]n = 2 \: or \: n = 10[/tex]


We put n=2 into the equation to get,

[tex] \sqrt{6(2) - 11} = 2 - 3[/tex]


[tex] 1 = - 1[/tex]


This statement is false, hence 2 is an extraneous solution


We put n=10, to get

[tex] \sqrt{6(10) - 11} = 10 - 3[/tex]


[tex] \sqrt{49} = 7[/tex]


[tex]7 = 7[/tex]


This is true, hence the only solution is
[tex]n = 10[/tex]