Let u = (1,0,2) , v = (0,-1,2) and w = (2,1,0). Compute



(i) the area of the parallelogram bounded by u and v (5)

(ii) the equation of the plane parallel to v and w pass through the tip of u

Respuesta :

Answers: 

(i) 3
(ii) [tex]-2x + 4y + 2z = 2[/tex]
 
Explanation: 


(i) The area of the parallelogram bounded by vectors u and v is given by:

[tex]\text{Area} = \left \| u \times v \right \|[/tex]

Note that if [tex]u = (u_1, u_2, u_3) = (1, 0, 2), v = (v_1, v_2, v_3) = (0, -1, 2) [/tex],

[tex]u \times v \\ = \left(u_2v_3-u_3v_2, u_3v_1-u_1v_3, u_1v_2-u_2v_1\right) \\ = \left((0)(2)-(2)(-1), (2)(0)-(1)(2), (1)(-1)-(0)(0)\right) \\ \boxed{u \times v = \left(2, -2, -1 \right)}[/tex]

Thus, the area of the parallelogram formed by vectors u and v is calculated as

[tex]\text{Area} = \left \| u \times v \right \| \\ = \left \| \left(2, -2, -1 \right) \right \| \\ = \sqrt{(2)^2 + (-2)^2 + (1)^2} \\ \boxed{\text{Area} = 3}[/tex]

Hence, the area of the parallelogram is 3.

(ii) To obtain the equation of the plane, we must get its normal vector and a point in the plane.

As calculated in (i), the normal vector to the plane is [tex]v \times w[/tex] because the plane is parallel to vectors v and w. Note that if [tex]v = (v_1, v_2, v_3) = (0, -1, 2), w = (w_1, w_2, w_3) = (2, 1, 0)[/tex],

[tex]v \times w \\ = \left(v_2w_3-v_3w_2, v_3w_1-v_1w_3, v_1w_2-v_2w_1\right) \\ = \left((-2)(0)-(2)(1), (2)(2)-(0)(0), (0)(1)-(-1)(2)\right) \\ \boxed{v \times w = \left(-2, 4, 2 \right)}[/tex]

Thus, a normal vector to the plane is [tex]\left(-2, 4, 2 \right)[/tex].

To get a point in the plane, note that vector u can be represented by any pairs of points. So, we can take (0, 0, 0) to be the starting point of vector u. Since [tex]u = (1, 0, 2)[/tex], the tip of vector u is [tex](0 + 1, 0, 0 + 2) = (1, 0, 2)[/tex]. Because the plane passes thru the tip of vector u, a point in the plane has coordinates [tex] (1, 0, 2)[/tex]. 

So for any point [tex](x, y, z)[/tex] in the plane, the equation is given by

[tex]n \cdot (x - 1, y - 0, z - 2) = 0[/tex]

Where n is the normal vector to the plane.

Since [tex]n = \left(-2, 4, 2 \right)[/tex], the equation becomes 

[tex]\left(-2, 4, 2 \right) \cdot (x - 1, y - 0, z - 2) = 0 \\ \left(-2, 4, 2 \right) \cdot (x - 1, y, z - 2) = 0 \\ -2(x - 1) + 4y + 2(z - 2) = 0 \\ -2x + 2 + 4y + 2z - 4 = 0 \\ -2x + 4y + 2z - 2 = 0 \\ \boxed{-2x + 4y + 2z = 2 }[/tex]