Respuesta :

f(x)=2x(2)−96

Step 1: Add -4x to both sides.

xf+ −4x = 4x−96+ −4x

xf −4x= −96

Step 2: Factor out variable x.

x(f−4)= −96

Step 3: Divide both sides by f-4.

x(f−4)/ f−4 = −96/ f−4

x= −96/f−4

Answer:

x= −96/ f−4

Answer:

[tex]x=\pm 4\sqrt{3}[/tex]

Step-by-step explanation:

We have been given an equation [tex]f(x)=2x^2-96[/tex]. We are asked to solve for x.

To solve for x, we will equate our function with 0 as:

[tex]2x^2-96=0[/tex]

[tex]2x^2-96+96=0+96[/tex]

[tex]2x^2=96[/tex]

[tex]\frac{2x^2}{2}=\frac{96}{2}[/tex]

[tex]x^2=48[/tex]

Upon taking square root of both sides, we will get;

[tex]\sqrt{x^2}=\pm \sqrt{48}[/tex]

[tex]x=\pm \sqrt{48}[/tex]

Factor out perfect square from square root:

[tex]x=\pm \sqrt{16\cdot 3}[/tex]

[tex]x=\pm \sqrt{4^2\cdot 3}[/tex]

[tex]x=\pm 4\sqrt{3}[/tex]

Therefore, the solution of our given equation is [tex]x=\pm 4\sqrt{3}[/tex].

Otras preguntas