Respuesta :
Henson family
[tex]3x + y = 163[/tex]
Garcia family
[tex]2x + 3y = 174[/tex]
Solution:
[tex]y = 163 - 3x[/tex]
Substitute that into
[tex]2x + 3(163 - 3x) = 174 \\ 2x + 489 - 9x = 174 \\ 7x = 315 \\ x = 45[/tex]
Substitute that into
[tex]y = 163 - 3(45) \\ y = 28[/tex]
Answer: x = 45, y = 28
Hope this helps. - M
[tex]3x + y = 163[/tex]
Garcia family
[tex]2x + 3y = 174[/tex]
Solution:
[tex]y = 163 - 3x[/tex]
Substitute that into
[tex]2x + 3(163 - 3x) = 174 \\ 2x + 489 - 9x = 174 \\ 7x = 315 \\ x = 45[/tex]
Substitute that into
[tex]y = 163 - 3(45) \\ y = 28[/tex]
Answer: x = 45, y = 28
Hope this helps. - M
------------------------------------
Define x and y :
------------------------------------
Adult ticket = x
Children ticket = y
------------------------------------
Henson's family:
------------------------------------
3 adult and 1 child ticket for $163
⇒ 3x + y = 163
------------------------------------
Gracia's family:
------------------------------------
2 adult and 3 child tickets for $174
⇒ 2x + 3y = 174
------------------------------ Extra : To solve for x and y ------------------------------
------------------------------------
Solve for x and y :
------------------------------------
3x + y = 163 ----------------- (1)
2x + 3y = 174 ---------------- (2)
(1) x 3 :
9x + 3y = 489 ------------ (1a)
(1a) - (2) :
7x = 315
x = $45 ----------------- sub into (1)
3x + y = 163
3(45) + y = 163
135 + y = 163
y =$28
------------------------------------
Find the price of the tickets:
------------------------------------
Adult ticket = x = $45
Children ticket = y = $28
Define x and y :
------------------------------------
Adult ticket = x
Children ticket = y
------------------------------------
Henson's family:
------------------------------------
3 adult and 1 child ticket for $163
⇒ 3x + y = 163
------------------------------------
Gracia's family:
------------------------------------
2 adult and 3 child tickets for $174
⇒ 2x + 3y = 174
------------------------------ Extra : To solve for x and y ------------------------------
------------------------------------
Solve for x and y :
------------------------------------
3x + y = 163 ----------------- (1)
2x + 3y = 174 ---------------- (2)
(1) x 3 :
9x + 3y = 489 ------------ (1a)
(1a) - (2) :
7x = 315
x = $45 ----------------- sub into (1)
3x + y = 163
3(45) + y = 163
135 + y = 163
y =$28
------------------------------------
Find the price of the tickets:
------------------------------------
Adult ticket = x = $45
Children ticket = y = $28