Respuesta :

Space

Answer:

[tex]\displaystyle \rho = \frac{1}{3 \sin \phi \cos \theta + 6 \sin \phi \sin \theta + 7 \cos \phi}[/tex]

General Formulas and Concepts:
Multivariable Calculus

Spherical Coordinate Conversions:

  • [tex]\displaystyle r = \rho \sin \phi[/tex]
  • [tex]\displaystyle x = \rho \sin \phi \cos \theta[/tex]
  • [tex]\displaystyle z = \rho \cos \phi[/tex]
  • [tex]\displaystyle y = \rho \sin \phi \sin \theta[/tex]
  • [tex]\displaystyle \rho & = \sqrt{x^2 + y^2 + z^2} \\ &[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle 3x + 6y + 7z = 1[/tex]

Step 2: Convert

  1. [Equation] Substitute in Spherical Coordinate Conversions:
    [tex]\displaystyle 3 \rho \sin \phi \cos \theta + 6 \rho \sin \phi \sin \theta + 7 \rho \cos \phi = 1[/tex]
  2. Factor:
    [tex]\displaystyle \rho \bigg( 3 \sin \phi \cos \theta + 6 \sin \phi \sin \theta + 7 \cos \phi \bigg) = 1[/tex]
  3. Isolate ρ:
    [tex]\displaystyle \rho = \frac{1}{3 \sin \phi \cos \theta + 6 \sin \phi \sin \theta + 7 \cos \phi}[/tex]

∴ we have written the given equation in spherical coordinates.

---

Learn more about multivariable calculus: https://brainly.com/question/4746216

---

Topic: Multivariable Calculus

Unit: Triple Integrals Applications