Respuesta :

Answer:

Option 1 - cos 240°

Step-by-step explanation:

Given : Expression [tex]\cos 120^\circ[/tex]

To find : Which expression is equivalent to given expression ?  

Solution :

The given  expression is equivalent to those whose value is same as [tex]\cos 120^\circ[/tex]

Value of

[tex]\cos 120^\circ= \cos (180-60)[/tex]

[tex]\cos 120^\circ= -\cos 60[/tex]

[tex]\cos 120^\circ= -\frac{1}{2}[/tex]

value of cos in second quadrant is negative.

Option 1 : [tex]\cos 240^\circ[/tex]

[tex]\cos 240^\circ= \cos (180+60)[/tex]

[tex]\cos 240^\circ= -\cos 60[/tex]

[tex]\cos 240^\circ= -\frac{1}{2}[/tex]

Equivalent

Option 2 : [tex]\cos 300^\circ[/tex]

[tex]\cos 300^\circ= \cos (360-60)[/tex]

[tex]\cos 300^\circ= \cos (2\times 180- 60)[/tex]

[tex]\cos 300^\circ= \cos (60)[/tex]

[tex]\cos 300^\circ= \frac{1}{2}[/tex]

Not equivalent

Option 3 : [tex]\cos 420^\circ[/tex]

[tex]\cos 420^\circ= \cos (360+60)[/tex]

[tex]\cos 300^\circ= \cos (2\times 180+60)[/tex]

[tex]\cos 420^\circ= \cos 60[/tex]

[tex]\cos 420^\circ= \frac{1}{2}[/tex]

Not equivalent

Therefore, Correct option is 1.

[tex]\cos 120^\circ=\cos 240^\circ=-\frac{1}{2}[/tex]

Answer:

Correct option is 1.

Step-by-step explanation:

We have to find the expression which is equivalent to cos 120°

Expression: [tex]\cos 120^\circ[/tex]

The given expression is equivalent to those whose value is same as [tex]\cos 120^\circ[/tex]

[tex]\cos 120^\circ= \cos (180-60)[/tex]

[tex]\cos 120^\circ= -\cos 60[/tex]

[tex]\cos 120^\circ= -\frac{1}{2}[/tex]

value of cos 120° in second quadrant is negative.

Option 1 : [tex]\cos 240^{\circ}[/tex]

[tex]\cos 240^{\circ}= \cos (180+60)= -\cos 60[/tex]

[tex]\cos 240^{\circ}= -\frac{1}{2}[/tex]

Value is same i.e equivalent

Option 2 : [tex]\cos 300^{\circ}[/tex]

[tex]\cos 300^\circ= \cos (360-60)[/tex]

[tex]\cos 300^\circ= \cos (2\times 180- 60)[/tex]

[tex]\cos 300^\circ= \cos (60)[/tex]

[tex]\cos 300^\circ= \frac{1}{2}[/tex]

Not equivalent

Option 3 : [tex]\cos 420^\circ[/tex]

[tex]\cos 420^\circ= \cos (360+60)[/tex]

[tex]\cos 300^\circ= \cos (2\times 180+60)[/tex]

[tex]\cos 420^\circ= \cos 60[/tex]

[tex]\cos 420^\circ= \frac{1}{2}[/tex]

Not equivalent

∴ Correct option is 1.

[tex]\cos 120^\circ=\cos 240^\circ=-\frac{1}{2}[/tex]