Respuesta :

Answer:

Part A) [tex]sin(A)=\frac{2\sqrt{42}}{23}[/tex]

Part B) [tex]cos(A)=\frac{19}{23}[/tex]

Part C) [tex]tan(A)=\frac{2\sqrt{42}}{19}[/tex]

Step-by-step explanation:

Part A) we know that

In the right triangle ABC of the figure the sine of angle A is equal to divide the opposite side angle A by the hypotenuse

so

[tex]sin(A)=\frac{BC}{AB}[/tex]

substitute the values

[tex]sin(A)=\frac{2\sqrt{42}}{23}[/tex]

Part B) we know that

In the right triangle ABC of the figure the cosine of angle A is equal to divide the adjacent side angle A by the hypotenuse

so

[tex]cos(A)=\frac{AC}{AB}[/tex]

substitute the values

[tex]cos(A)=\frac{19}{23}[/tex]

Part C) we know that

In the right triangle ABC of the figure the tangent of angle A is equal to divide the opposite side angle A by the adjacent side angle A

so

[tex]tan(A)=\frac{BC}{AC}[/tex]

substitute the values

[tex]tan(A)=\frac{2\sqrt{42}}{19}[/tex]