Respuesta :

I have attached how to work through this problem. I hope this helps
Ver imagen kadelelopez

Answer:

The range of y is [tex][-\dfrac{5}{2},\dfrac{1}{2}][/tex]

Step-by-step explanation:

Given: [tex]y=\dfrac{3}{2}\cos (4x) -1[/tex]

It is cosine function of trigonometry.

We need to find the range of given function. The value of y shows range of function.

y is depends on cosine function.

As we know cosine max/min value is fixed.

y is max when cosine max.

y is min when cosine is min.

Maximum value of cosine = 1

[tex]y_{max}=\dfrac{3}{2}(1) -1=\dfrac{1}{2}[/tex]

Minimum value of cosine = -1

[tex]y_{min}=\dfrac{3}{2}(-1) -1=-\dfrac{5}{2}[/tex]

Range of y: [min,max]

Range: [tex][-\dfrac{5}{2},\dfrac{1}{2}][/tex]

Hence, The range of y is [tex][-\dfrac{5}{2},\dfrac{1}{2}][/tex]