Respuesta :
The correct answer is 'they are not similar because line BR : line DB is 1 : 2 and line KE : line YK is 1 : 3'. This is correct because I took the test and got it right.
The correct answer is:
C. They are similar because the corresponding sides of kites KELY and BRAD all have the relationship 2:1.
Using the distance formula,
[tex]d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]
the lengths of the sides of BRAD are:
[tex]\text{BR}=\sqrt{(7-6)^2+(3-4)^2}=\sqrt{1^2+(-1)^2}=\sqrt{1+1}=\sqrt{2}
\\
\\\text{RA}=\sqrt{(6-3)^2+(4-3)^2}=\sqrt{3^2+1^2}=\sqrt{9+1}=\sqrt{10}
\\
\\\text{AD}=\sqrt{(3-6)^2+(3-2)^2}=\sqrt{(-3)^2+1^2}=\sqrt{9+1}=\sqrt{10}
\\
\\\text{DB}=\sqrt{(6-7)^2+(2-3)^2}=\sqrt{(-1)^2+(-1)^2}=\sqrt{1+1}=\sqrt{2}[/tex]
The lengths of the sides of KELY are:
[tex]\text{KE}=\sqrt{(2-0)^2+(11-9)^2}=\sqrt{2^2+2^2}=\sqrt{4+4}=\sqrt{8}=2\sqrt{2}
\\
\\\text{EL}=\sqrt{(0-2)^2+(9-3)^2}=\sqrt{(-2)^2+6^2}=\sqrt{40}=2\sqrt{10}
\\
\\\text{LY}=\sqrt{(2-4)^2+(3-9)^2}=\sqrt{(-2)^2+(-6)^2}=\sqrt{40}=2\sqrt{10}
\\
\\\text{YK}=\sqrt{(4-2)^2+(9-11)^2}=\sqrt{2^2+(-2)^2}=\sqrt{8}=2\sqrt{2}[/tex]
Each side of KELY is twice the length of the corresponding side on BRAD. This makes the ratio of the sides 2:1 and the figures are similar.