Rewrite the following equation in the form y = a(x - h)2 + k. Then, determine the x-coordinate of the minimum.

y = 2x2 - 32x + 56

The rewritten equation is y = (x - )2 + .

The x-coordinate of the minimum is .

Respuesta :

So we are given a function, [tex]y = 2x^2-32x + 56[/tex].
Proceed like this:
[tex]y = 2(x^2-16x + 28)\\ =2(((x-8)^2-64)+28)\\=2(x-8)^2-128+28\\=2(x-8)^2-100[/tex]
The vertex, which is also the maximum, is the following point:
[tex](8,100)[/tex]

Answer:

y=2(x-8)^2 +(-72)

x-coordinate of minimum is 8

Step-by-step explanation: