If there are 520 grams of radioactive material with a half-life of 12 hours, how much of the radioactive material will be left after 72 hours? Is the radioactive decay modeled by a linear function or an exponential function?

Respuesta :

[tex]\bf \textit{Amount for Exponential Decay using Half-Life} \\\\ A=P\left( \frac{1}{2} \right)^{\frac{t}{h}}\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{initial amount}\to &520\\ t=\textit{elapsed time}\to &72\\ h=\textit{half-life}\to &12 \end{cases} \\\\\\ A=520\left( \frac{1}{2} \right)^{\frac{72}{12}}\implies A=520\left( \frac{1}{2} \right)^6\implies A=8.125[/tex]

is it linear or exponential?  well, look above.
Exponential! Hope it helps