What values for q (0 ≤q≤2π)
satisfy the equation?
22√sin q + 2 = 0

Answer:
The value of q are [tex] \frac{5\pi}{4},\frac{7\pi}{4}[/tex]
C is correct.
Step-by-step explanation:
Given: [tex]2\sqrt{2}\sin q+2=0[/tex]
We need to solve for q.
[tex]2\sqrt{2}\sin q+2=0[/tex]
Subtract 2 both side
[tex]2\sqrt{2}\sin q=-2[/tex]
Divide both sides by [tex]2\sqrt{2}[/tex]
[tex]\sin q=\frac{-2}{2\sqrt{2}}[/tex]
[tex]\sin q=\frac{-1}{\sqrt{2}}[/tex]
Here, sin q is negative. Sine is negative in III and IV quadrant [0,2π ]
[tex]\sin q=-\sin \frac{\pi}{4}[/tex]
In III quadrant, [tex]q=\pi+\frac{\pi}{4}=\frac{5\pi}{4}[/tex]
In IV quadrant, [tex]q=2\pi-\frac{\pi}{4}=\frac{7\pi}{4}[/tex]
Thus, The value of q are [tex] \frac{5\pi}{4},\frac{7\pi}{4}[/tex]