Respuesta :
Answer:
[tex]A(1)=-5\times2^1-1=-11[/tex]
[tex]A(1)=-5\times2^4-1=-81[/tex]
[tex]A(1)=-5\times2^8-1=-1281[/tex]
Step-by-step explanation:
Given : [tex]A(n)=-5\times2^n-1[/tex]
To find : [tex]A(1), A(4), A(18)[/tex]
Solution:
Put n=1, [tex]A(1)=-5\times2^1-1[/tex]
[tex]A(1)=-10-1=-11[/tex]
Put n=4, [tex]A(1)=-5\times2^4-1[/tex]
[tex]A(1)=-80-1=-81[/tex]
Put n=8, [tex]A(1)=-5\times2^8-1=[/tex]
[tex]A(1)=-1280-1=-1281[/tex]
Answer: [tex]A(1)=-5[/tex]
[tex]A(4)=-40[/tex]
[tex]A(8)=-640[/tex]
Step-by-step explanation:
Given sequence : [tex]A(n)=-5\times2^{n-1}[/tex]
To find the first term, we need to put n=1 in the above sequence , we get
[tex]A(1)=-5\times2^{1-1}=-5\times2^0=-5[/tex]
To find the fourth term, we need to put n=4, we get
[tex]A(4)=-5\times2^{4-1}=-5\times2^3=-5\times8=-40[/tex]
To find the eighth term, we need to put n=8, we get
[tex]A(8)=-5\times2^{8-1}=-5\times2^7=-5\times128=-640[/tex]