Respuesta :

The following triangle is isosceles.

Ver imagen Panoyin

Answer:

the triangle ABC of the figure is an isosceles triangle

Step-by-step explanation:

we have

[tex]A(8,2),B(11,13),C(2,6)[/tex]        

Using a graphing tool

Plot the triangle

see the attached figure

The triangle in the figure is not a right triangle ------> Is an acute triangle

Verify if the triangle ABC is an isosceles triangle

we know that

An isosceles triangle has two equal sides and two equal angles

Verify if [tex]AB=BC[/tex]

Remember that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Find the distance AB

we have

[tex]A(8,2),B(11,13)[/tex]    

substitute in the formula

[tex]d=\sqrt{(13-2)^{2}+(11-8)^{2}}[/tex]

[tex]d=\sqrt{(11)^{2}+(3)^{2}}[/tex]

[tex]dAB=\sqrt{130}\ units[/tex]

Find the distance BC

we have

[tex]B(11,13),C(2,6)[/tex]      

substitute in the formula

[tex]d=\sqrt{(6-13)^{2}+(2-11)^{2}}[/tex]

[tex]d=\sqrt{(-7)^{2}+(-9)^{2}}[/tex]

[tex]dBC=\sqrt{130}\ units[/tex]

therefore

[tex]AB=BC[/tex] -------> the triangle ABC of the figure is an isosceles triangle

Ver imagen calculista