Respuesta :

Answer:

The odd function among the given choices are:

  • [tex]f(x)=x^5-3x^3+2x[/tex]
  • [tex]f(x)=\dfrac{1}{x}[/tex]

Step-by-step explanation:

We have to check which of the following function is odd.

We know that a function f(x) is said to be an odd function if:

[tex]f(-x)= -f(x)[/tex]

1)

[tex]f(x)=x^3-x^2[/tex]

on replacing x with -x we have:

[tex]f(-x)=(-x)^3-(-x)^2\\\\f(-x)=-x^3-x^2\neq -f(x)[/tex]

Hence, the given function f(x) is not an odd function.

2)

[tex]f(x)=x^5-3x^3+2x[/tex]

on replacing x with -x we have:

[tex]f(-x)=(-x)^5-3(-x)^3+2(-x)\\\\f(-x)=-x^5+3x^3-2x\\\\f(-x)=-(x^5-3x^3+2x)\\\\f(-x)=-f(x)[/tex]

Hence, function f(x) is an odd function.

3)

[tex]f(x)=4x+9[/tex]

on replacing x with -x we have:

[tex]f(-x)=4(-x)+9\\\\f(-x)=-4x+9\\\\f(-x)\neq -f(x)[/tex]

Hence, function f(x) is not an odd function.

4)

[tex]f(x)=\dfrac{1}{x}[/tex]

on replacing x with -x we have:

[tex]f(-x)=\dfrac{1}{(-x)}\\\\f(-x)=\dfrac{-1}{x}\\\\f(-x)=-f(x)[/tex]

Hence, the given function f(x) is an odd function.

A function is odd if and only if:

f(-x) = -f(x)

For every value of x in its domain.

We will see that the odd functions are:

f(x) = x^5 - 3*x^3 + 2*x

f(x) = 1/x

Now we only need to test the above condition for all the given functions:

1) f(x) = x^3 - x^2

Evaluating this in -x we get:

f(-x) = (-x)^3 - (-x)^2 = -x^3 - x^2

Here we can see that:

f(-x) ≠ -f(x)

Thus, this function is not odd.

2) f(x) = x^5 - 3*x^3 + 2*x

Evaluating in -x we get:

f(-x) = (-x)^5 - 3*(-x)^3 + 2*(-x)

      = -x^5 + 3*x^3 - 2*x = -f(x)

This function is odd.

3) f(x) = 4x + 9

Evaluating in -x we get:

f(-x) = 4*(-x) + 9 = -4*x + 9

while:

-f(x) = -( 4*x + 9) = -4*x - 9

Thus: f(-x) ≠ -f(x)

Then this function is not odd.

4) f(x)  = 1/x

Evaluating in -x we get:

f(-x) = 1/(-x) = -1/x

Then we can see that:

f(-x) = -f(x)

Thus this function is odd.

If you want to learn more, you can read:

https://brainly.com/question/15775372