Simplify. 7√50x^15y^21 Assume x and y are nonnegative.

A.5x7y102xy−−−B.35x7y102xy2−−−−C.35x7y10xy−−D.35x7y102xy−−−

Respuesta :

Given expression is [tex]7 \sqrt{50x^{15}y^{21}}[/tex] where x and y are non negative.

Now we have to simplify this to find the correct matching choice.

[tex]7 \sqrt{50x^{15}y^{21}}[/tex]

[tex]=7 \sqrt{25*2x^{15}y^{21}}[/tex]

[tex]=7 \sqrt{25*2x^{14}*xy^{20}*y}[/tex]

[tex]=7*5x^{7}y^{10} \sqrt{2*x*y}[/tex]

[tex]=35x^{7}y^{10} \sqrt{2xy}[/tex]

Which best matches with choice D.

Hence final answer is [tex]35x^{7}y^{10} \sqrt{2xy}[/tex] .