Find the quotient................................

Answer:
A
Step-by-step explanation:
To find this quotient, we divide each term inside the parenthesis by [tex]2a[/tex]. Then we simplify. So we have:
[tex]\frac{4a^4}{2a}+\frac{6a^3}{2a}-\frac{10a^2}{2a}\\=2a^{4-1}+3a^{3-1}-5a^{2-1}\\=2a^3+3a^2-5a[/tex]
Answer choice A is correct.
Answer:
A. [tex]2a^3+3a^2-5a[/tex]
Step-by-step explanation:
we are given
[tex](4a^4+6a^3-10a^2)[/tex]÷(2a)
so, we can divide 2a to all the terms
and we get
[tex]\frac{(4a^4+6a^3-10a^2)}{2a} =\frac{4a^4}{2a}+\frac{6a^3}{2a}-\frac{10a^2}{2a}[/tex]
we can simplify it
[tex]\frac{(4a^4+6a^3-10a^2)}{2a} =\frac{2a\times 2a^3}{2a}+\frac{2a\times 3a^2}{2a}-\frac{2a\times 5a}{2a}[/tex]
[tex]\frac{(4a^4+6a^3-10a^2)}{2a} =2a^3+3a^2-5a[/tex]
so, quotient is
[tex]2a^3+3a^2-5a[/tex]