Respuesta :

Answer:

A


Step-by-step explanation:


To find this quotient, we divide each term inside the parenthesis by [tex]2a[/tex]. Then we simplify. So we have:

[tex]\frac{4a^4}{2a}+\frac{6a^3}{2a}-\frac{10a^2}{2a}\\=2a^{4-1}+3a^{3-1}-5a^{2-1}\\=2a^3+3a^2-5a[/tex]


Answer choice A is correct.

Answer:

A.  [tex]2a^3+3a^2-5a[/tex]

Step-by-step explanation:

we are given

[tex](4a^4+6a^3-10a^2)[/tex]÷(2a)

so, we can divide 2a to all the terms

and we get

[tex]\frac{(4a^4+6a^3-10a^2)}{2a} =\frac{4a^4}{2a}+\frac{6a^3}{2a}-\frac{10a^2}{2a}[/tex]

we can simplify it

[tex]\frac{(4a^4+6a^3-10a^2)}{2a} =\frac{2a\times 2a^3}{2a}+\frac{2a\times 3a^2}{2a}-\frac{2a\times 5a}{2a}[/tex]

[tex]\frac{(4a^4+6a^3-10a^2)}{2a} =2a^3+3a^2-5a[/tex]

so, quotient is

[tex]2a^3+3a^2-5a[/tex]