one x-intercept for a parabola is at the point (2.5,0). Use the quadratic formula to find the other x-intercept for the parabola defined by this equation: y=2x^2-x-10

separate the values with a comma. Round, if necessary, to the nearest hundredth.

Respuesta :

Answer:

(-2, 0)

Step-by-step explanation:

Focus on the given equation:  y=2x^2-x-10.  Here the coefficients are a = 2, b = -1 and c = -10.

Then the roots (closely related to x-intercepts) are

      -b plus or minus sqrt(b^2 - 4ac)

x = ------------------------------------------------

                           2a

or, specifically for the problem at hand,


      -(-1) plus or minus sqrt([-1]^2 - 4[2][-10]

x = -------------------------------------------------------- = 5/2 (same as 2.5 in (2.5,0) )

                           2[2]

       1 plus or minus sqrt(81)

   = ---------------------------------------

                           4


       1 plus 9               1 minus 9

   = -------------   or   -------------------    => 10/4 or 5/2     OR     -8/4 = - 2

              4                        4


One x-intercept is given:  (2.5, 0).

The other is (-2, 0)